

SET-Mechanismus bei Substitutionsreaktionen an Diorganyldichalkogeniden

Benno Bildstein, Karlheinz Giselbrecht und Fritz Sladky*

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck

Eingegangen am 17. Juli 1989

Key Words: SET mechanism / Selenide, tris(trimethylsilyl)methyl-substituted / Telluride, tris(trimethylsilyl)methylsubstituted / Selenol, tris(trimethylsilyl)methyl-

SET Mechanism in Substitution Reactions with Diorganyl Dichalcogenides

Reaction of the sterically demanding tris(trimethylsilyl)methyl carbanion (Tsi^{\odot}) with bis[tris(trimethylsilyl)methyl] diselenide (Tsi₂Se₂) or ditelluride (Tsi₂Te₂) in THF does not lead to the expected substitution products Tsi₂Se or Tsi₂Te. Instead, 2- tetrahydrofuranyl tris(trimethylsilyl)methyl selenide (4a) or telluride (4b), tris(trimethylsilyl)methane (5), and tris(trimethylsilyl)methylselenol (6a) are formed. This is interpreted in terms of a single electron transfer (SET) from Tsi^{\ominus} to the respective diorganyl dichalcogenide, giving rise to intermediate chalcogenyl radicals TsiSe[°] and TsiTe[°], which are trapped by the solvent THF. Methyl- or phenyllithium react with Tsi₂Se₂ or Tsi₂Te₂ to afford the expected substitution products Me - Ch - Tsi (1a, 1b) or Ph-Ch - Tsi (2a, 2b) (a: CH = Se, b: Ch = Te), but products derived from chalcogenyl radicals are detectable in minor yields.

Demgemäß reagieren MeLi, PhLi oder Tris(trimethylsilyl)methyllithium (TsiLi)³⁾ mit Diphenyldichalkogeniden zu den entsprechenden Monochalkogeniden⁴⁾ (Tab. 1). Mit Bis[tris(trimethylsilyl)methyl]diselenid (Tsi₂Se₂)⁵⁾, bzw. -ditellurid (Tsi₂Te₂)⁶⁾ und TsiLi werden die Substitutionsprodukte im Sinne von Gl. (2), Tsi – Se – Tsi bzw. Tsi – Te – Tsi, nicht erhalten, statt dessen ergibt sich folgende Produktverteilung (Gl. 3, Tab. 2).

$$Tsi_{2}Ch_{2} + TsiLi \xrightarrow{HH}$$

$$Tsi-Ch-Li + Tsi-Ch-thf + TsiH + Tsi-Ch-H \qquad (3)$$

$$3a,3b \qquad 4a,4b \qquad 5 \qquad 6a$$

THE

Tsi = Tris(trimethylsilyl)methyl, THF = Tetrahydrofuran, thf = 2-Tetrahydrofuranyl, a: Ch = Se, b: Ch = Te.

Tab	2	NMR-Daten	von	1 a.	1 h.	28.	2 b.	4 a.	4b.	6a ^{a)}
I a U.	4.	min-Daton	1011	1 a.,	,	_ a,	~v ,		чь,	

	¹ H-NMR	¹³ C-NMR	⁷⁷ Se-NMR/ ¹²⁵ Te-NMR
1a	0.21 (s, 27H, Tsi)	2.1 (Tsi) ^{b)}	+ 133°)
	2.09 (s, 3H, Me)	6.9 (Me)	
1 b	0.28 (s, 27H, Tsi)	4.8 (Tsi) ^{b)}	+ 205 ^d)
	2.05 (s, 3H, Me)	8.7 (Me)	
2a	0.23 (s, 27 H, Tsi)	3.8 (Tsi) ^{b)}	+ 330
	7.28 (m, 3H, Ph)	(C-1, Ph) ^{b)}	
	7.86 (m, 2H, Ph)	128.7 (C-3, Ph)	
		129.1 (C-4, Ph)	
		138.9 (C-2, Ph)	
2 b	0.25 (s, 27 H, Tsi)	5.1 (Tsi) ^{b)}	+ 520
	7.27 (m, 3H, Ph)	111.2 (C-1, Ph)	
	8.14 (m, 2H, Ph)	128.0 (C-3, Ph)	
		129.1 (C-4, Ph)	
		143.2 (C-2, Ph)	
4 a	0.22 (s, 27 H, Tsi)	3.1 (Tsi) ^{b)}	+ 356
	1.84 (m, 2H, 3-H)	24.9 (C-3)	
	2.19 (m, 2H, 4-H)	35.0 (C-2)	
	3.85 (m, 2H, 2-H)	67.0 (C-4)	
	5.88 (dd, $J = 7.3$ Hz,	81.2 (C-1)	
	J = 4.2 Hz, 1 H, 1-H)		
4b	0.35 (s, 27 H, Tsi)	4.3 (Tsi) ^{b)}	+ 512 ^{e)}
	1.30 (m, 2H, 3-H)	25.3 (C-3)	
	1.85 (m, 2H, 4-H)	36.5 (C-2)	
	3.60 (m, 2H, 2-H)	67.1 (C-4)	
	$6.45 (\mathrm{dd}, J = 7.4 \mathrm{Hz},$	67.6 (C-1)	
	J = 4.4 Hz, 1H, 1-H)		
62	0.19 (s, 27H, Tsi) —0.95 (s, 1H, HSe)	2.1 (Tsi) ^{b)}	-1"

^{a)} Lösungsmittel CDCl₁ oder CD₂Cl₂, Tsi = $(Me_3Si)_3C$, thf = 2-Tetrahydrofuranyl. – ^{b)} Quart. Kohlenstoff nicht beobachtet. – ^{c)} ${}^2J({}^{17}Se,{}^{1}H) = 14 Hz$ (q). – ${}^{d)} {}^2J({}^{125}Te,{}^{1}H) = 28 Hz$ (q). – ^{e)} ${}^2J({}^{125}Te,{}^{1}H) = 12 Hz$ (d); ${}^3J({}^{125}Te,{}^{1}H) = 40 Hz$ (t). – ⁿ ${}^1J({}^{17}Se,{}^{1}H) = 25 Hz$ (d).

Eine generelle Methode zur Darstellung von Diorganylseleniden bzw. -telluriden ist die Reaktion eines Carbanions mit einem elektrophilen Organylchalkogen-Reagenz $R - Ch - X^{1,2}$ (Gl. 1, 2).

$$R^{\Theta} + R' - Ch - X \xrightarrow{S_{N}} R - Ch - R' + X^{\Theta}$$
(1)

$$\mathbf{R}^{\Theta} + \mathbf{R}' - \mathbf{C}\mathbf{h} - \mathbf{C}\mathbf{h} - \mathbf{R}' \xrightarrow{\mathbf{S}_{\mathsf{N}}} \mathbf{R} - \mathbf{C}\mathbf{h} - \mathbf{R}' + \mathbf{R}' - \mathbf{C}\mathbf{H}^{\Theta}$$
(2)

R,R' = Organyl; Ch = Se, Te; X = Halogen, Pseudohalogen

Tab. 1. Reaktion von Carbanionen R^{\ominus} mit Diorganyldichalkogeniden $R'_2Ch_2^{a)}$

Edukte R^{Θ} , R'_2Ch_2	Produktvo (% SET-Prod.	erteilung) ^{b)} S _N -Prod.	Produkte ^{c)}
Me^{Θ} , Ph_2Ch_2	0	100	Me-Ch-Ph, $Ph-Ch^{\Theta}$
Ph^{Θ} , Ph_2Ch_2 ,	0	100	$Ph - Ch - Ph, Ph - Ch^{\Theta}$
Tsi^{Θ} , Ph_2Ch_2	0	100	Tsi−Ch−Ph, Ph−Ch [⊖]
Me [⊖] , Tsi₂Ch₂	5	95	1 a, 1 b, 3 a, 3 b
Ph [⊖] , Tsi ₂ Ch ₂	5	95	2a, 2b, 3a, 3b
Tsi^{Θ} , Tsi_2Ch_2	100	0	3a, 3b, 4a, 4b, 5, 6a

^{a)} $\mathbf{R} = \mathbf{Me}$, Ph, Tsi; $\mathbf{R}' = Ph$, Tsi; **a**: Ch = Se, **b**: Ch = Te; Tsi = (Me₃Si)₃C, thf = 2-Tetrahydrofuranyl. $-^{b}$ NMR-spektroskopisch durch Integration. $-^{c}$ Isolierte Produkte.

Die Produkte **3a**, **3b**, **4a**, **4b** und **6a** sind auch bei Reaktionen von Tsi_2Se_2 bzw. Tsi_2Te_2 mit MeLi oder PhLi als Nebenprodukte nachweisbar (Tab. 1, Tab. 2).

Die nach Gl. (3) erhaltenen Produkte sind mit einem polaren Substitutionsmechanismus (S_N) unvereinbar: Eine α -Metallierung von THF durch Tsi-Li zu 2-Lithiotetrahydrofuran, das Tsi₂Ch₂ nucleophil im Sinne von Gl. (2) zu Tsi-Ch-thf (**4a**, **4b**) und Tsi-Ch-Li (**3a**, **3b**) substituieren könnte, ist auszuschließen, da Tsi-Li aus TsiH durch Metallierung mit MeLi in siedendem THF hergestellt wird³⁾.

Die Alternative zu einem polaren Reaktionsmechanismus ist eine Reaktionssequenz über radikalische Zwischenstufen. Die Produkte 4a, 4b und 6a lassen auf die Beteiligung von Selenyl- bzw. Tellurenyl-Radikalen (Tsi-Ch^o) schließen, die vom Lösungsmittel THF abgefangen werden. Da THF mit Tsi₂Ch₂ ohne photochemische Anregung nicht reagiert, können die Chalkogenyl-Radikale nur durch Ein-Elektronen-Übertragung (SET)⁷⁾ von Tsi-Li auf Tsi₂Ch₂ gebildet werden (Schema 1). Wie auch bei anderen Substitutionsreaktionen, die über Radikalanionen verlaufen können^{8,9}, wird auch bei der Reaktion von Carbanionen mit Diorganyldichalkogeniden (Tab. 1) durch zunehmende sterische Behinderung eines nucleophilen Angriffs ein radikalischer Mechanismus erleichtert; im Extremfall (Tab. 1; $\mathbf{R} = \mathbf{R}' = Tsi$) werden daher ausschließlich SET-Produkte erhalten. Die Endprodukte der Reaktion ergeben sich durch Reaktion der Radikale mit dem Lösungsmittel THF. H-Abstraktion führt zu TsiH (5) und Tsi-Se-H (6a); die dabei gebildeten Tetrahydrofuranyl-Radikale kombinieren mit den Chalkogenyl-Radikalen zu 4a, 4b. Eine denkbare Radikalkombination von Tsi° und $Tsi-Ch^{\circ}$ zu Tsi-Ch-Tsi dürfte aus sterischen Gründen nicht erfolgen.

Schema 1. Reaktion von Tsi_2Ch_2 (Ch = Se, Te) mit TsiLi [Tsi = $(Me_3Si)_3C$]

$$Tsi-Ch-Ch-Tsi + Tsi^{\odot}$$

$$SET$$

$$[Tsi-Ch-Ch-Tsi^{\odot\odot} + Tsi^{\odot}]$$

$$[Tsi-Ch^{\odot} + Tsi-Ch^{\odot} + Tsi^{\odot}]$$

$$[Tsi-Ch^{\odot} + Tsi-Ch^{\odot} + TsiH + \sqrt{0}^{\odot}]$$

$$+ THF$$

$$Tsi-Ch^{\odot} + Tsi-Ch^{-\sqrt{0}} + TsiH + Tsi-Ch-H$$

$$3a,3b + 4a,4b + 5 + 6a$$

Experimenteller Teil

Alle Reaktionen werden unter Ausschluß von Luft und Feuchtigkeit in absoluten, N₂-gesättigten Lösungsmitteln durchgeführt. – NMR: Bruker AM 300, δ in ppm, TMS (¹H, ¹³C), Me₂Se (⁷⁷Se), Me₂Te (¹²⁵Te) als Standards. – MS (EI, 70 eV, 25 °C): Varian MAT CH 7; *m/z* bezogen auf ⁸⁰Se, ¹³⁰Te.

Methyl[tris(trimethylsilyl)methyl]selenid (1a), -tellurid (1b), Phenyl[tris(trimethylsilyl)methyl]selenid (2a), -tellurid (2b): Zu einer Lösung von 435 mg (0.70 mmol) Tsi₂Se₂⁵ bzw. 500 mg (0.70 mmol) Tsi₂Te₂⁶ in 25 ml THF werden bei -30 °C unter Rühren 0.44 ml (0.70 mmol) MeLi (1.6 M in Et₂O) bzw. 0.35 ml (0.70 mmol) PhLi (2.0 M in Et₂O/PhH) gegeben. Die Lösung läßt man unter Rühren auf Raumtemp. kommen; sobald sich die Farbe der Lösung von Rot (für **1a**, **2a**) bzw. Grün (für **1b**, **2b**) nach Gelb geändert hat, ist die Reaktion beendet. Die Reaktionsmischung wird mit Eis/Wasser hydrolysiert; nach Extraktion mit Hexan, Trocknen mit MgSO₄ und Entfernen des Lösungsmittels i. Vak. wird das Rohprodukt an Kieselgel 60 (Merck) mit Petrolether als Eluens chromatographiert.

1a: 120 mg (53%) farblose Kristalle, Schmp. 90°C, $R_f = 0.65$. – MS: m/z (%) = 326 (24) [M⁺], 311 (74) [M⁺ – Me], 237 (9) [M⁺ – TMS], 222 (43) [M⁺ – TMS – Me].

C₁₁H₃₀SeSi₃ (325.6) Ber. C 40.57 H 9.29 Gef. C 40.86 H 9.39

1b: 158 mg (61%) hellgelbe Kristalle, Schmp. 80°C, $R_f = 0.75$. – MS: m/z (%) = 376 (50) [M⁺], 361 (90) [M⁺ – Me], 273 (50) [M⁺ – TMS], 216 (100) [Tsi⁺ – Me].

C₁₁H₃₀Si₃Te (374.2) Ber. C 35.31 H 8.08 Gef. C 35.43 H 8.15

2a: 117 mg (43%) farbloses Öl, Schmp. ca. 4°C, $R_f = 0.60$. – MS: m/z (%) = 388 (10) [M⁺], 373 (11) [M⁺ – Me], 300 (2) [M⁺ – TMS], 285 (7) [M⁺ – TMS – Me].

C₁₆H₃₂SeSi₃ (387.6) Ber. C 49.58 H 8.32 Gef. C 50.21 H 8.40

2b: 174 mg (57%) hellgelbe Kristalle, Schmp. 47 °C, $R_f = 0.55$. – MS: m/z (%) = 438 (30) [M⁺], 423 (5) [M⁺ – Me], 365 (20) [M⁺ – Me₃Si], 273 (100) [TsiTe⁺ – TMS].

C₁₆H₃₂Si₃Te (436.3) Ber. C 44.05 H 7.39 Gef. C 44.16 H 7.46

2-Tetrahydrofuranyl[tris(trimethylsilyl)methyl]selenid (4a), Tris-(trimethylsilyl)methylselenol (6a): Zu einer Lösung von 1.400 g (2.25 mmol) Tsi₂Se₂⁵⁾ in 25 ml THF werden bei Raumtemp. unter Rühren 6.820 ml (2.25 mmol) einer 0.33 M TsiLi/THF-Lösung³⁾ getropft. Nach 4.5stdg. Rühren bei Raumtemp. unter Argon wechselt die Farbe der Lösung von Rot nach Gelb. ¹H-NMR-Kontrolle zeigt vollständige Umsetzung zu 3a ($\delta = 0.22$), 4a, 5 ($\delta = 0.10$, s, 27 H, Me₃Si; $\delta = -0.78$, s, 1 H, HC) und als Nebenprodukt **6a** (siehe Tab. 2). Nach Hydrolyse mit Eis/Wasser, Extraktion mit Hexan, Trocknen mit MgSO4 und Entfernen des Lösungsmittels Vak. erhält man ein gelbes Öl als Rohprodukt, das laut DC neben 5 (im DC nicht detektierbar) eine Mischung von 4a ($R_f = 0.20$), 6a $(R_{\rm f} = 0.71)$ und Tsi₂Se_n $(n = 2; R_{\rm f} = 0.80; n = 3; R_{\rm f} = 0.81;$ entstanden durch Oxidation von 3a) ist. SC an Kieselgel 60 (Merck) mit Petrolether als Eluens ergibt 0.625 g (73%) 4a, farblose, luftstabile Kristalle, Schmp. 85°C und 0.056 g (8%) 6a, farblose, luftempfindliche Kristalle, Schmp. 70°C (Zers.).

4a: MS: m/z (%) = 382 (23) [M⁺], 367 (11) [M⁺ - Me], 311 (14) [TsiSe⁺].

6a: MS: m/z (%) = 312 (10) [M⁺], 297 (10) [M⁺ - Me], 282 (18) [M⁺ - 2 Me], 239 (23) [M⁺ - Me₃Si], 224 (28) [M⁺ - TMS]. **4a:** C₁₄H₃₄OSeSi₃ (381.6) Ber. C 44.06 H 8.98 Gef. C 43.81 H 8.92 **6a:** C₁₀H₂₈SeSi₃ (311.5) Ber. C 38.56 H 9.06 Gef. C 38.80 H 9.04

2-Tetrahydrofuranyl[tris(trimethylsilyl)methyl]tellurid (4b): Zu einer Lösung von 1.50 g (2.09 mmol) Tsi₂Te₂⁶⁾ in 25 ml THF wird wie bei 4a eine äquivalente Menge (6.30 ml, 2.09 mmol) einer 0.33 M TsiLi/THF-Lösung³⁾ zugegeben. Zum Unterschied zu 4a ist die Reaktion in einigen min beendet (Farbwechsel von Grün nach Gelb). ¹H-NMR-Kontrolle zeigt vollständige Umsetzung zu 3b ($\delta = 0.21$), 4b (siehe Tab. 2) und 5 (siehe unter 4a). Aufarbeitung wie für 4a ergibt ein braunes Rohprodukt [DC: 4b ($R_f = 0.20$); Tsi₂Te₂ ($R_f = 0.80$), entstanden durch Oxidation von 3b], das nach Chromatographie 0.68 g (76%) 4b als farblose, luftstabile und lichtSubstitutionsreaktionen an Diorganyldichalkogeniden

empfindliche Kristalle, Schmp. 69°C, gibt. – MS: m/z (%) = 432 (10) $[M^+]$, 417 (5) $[M^+ - Me]$, 361 (10) $[TsiTe^+]$.

C14H34OSi3Te (430.3) Ber. C 39.08 H 7.96 Gef. 38.88 H 7.89

CAS-Registry-Nummern

1a: 122444-81-9 / **1b**: 120313-45-3 / **2a**: 122444-82-0 / **2b**: 120313-46-4 / **4a**: 122444-83-1 / **4b**: 122444-84-2 / **6a**: 122444-85-3 / TsiLi: 28830-22-0 / TsiSe₂: 116302-65-9 / TsiTe₂: 103483-25-6 / Ph₂Se₂: 1666-13-3 / Ph₂Te₂: 32294-60-3

 $^{\rm t)}$ T. G. Back in Organoselenium Chemistry (D. Liotta, Ed.), S. 1-127, John Wiley & Sons, New York 1987.

- ²⁾ W. R. McWhinnie in *The chemistry of organic selenium and tel-lurium compounds* (S. Patai, Ed.), Bd. 2, S. 495-541, John Wiley & Sons, New York 1987.
- ³⁾ M. A. Cook, C. Eaborn, A. E. Jukes, D. R. M. Walton, J. Organomet. Chem. 24 (1970) 529.
 ⁴⁾ K. Giselbrecht, Dissertation, Univ. Innsbruck, 1989.

- ⁵⁾ W. W. du Mont, I. Wagner, Chem. Ber. 121 (1988) 2109.
 ⁶⁾ F. Sladky, B. Bildstein, C. Rieker, A. Gieren, H. Betz, T. Hübner, J. Chem. Soc., Chem. Commun. 1985, 1800.
 ⁷⁾ M. Chanon, M. L. Tobe, Angew. Chem. 94 (1982) 27; Angew.
- Chem. Int. Ed. Engl. 21 (1982) 1.
- ⁸⁾ N. Kornblum, Angew. Chem. **87** (1975) 797; Angew. Chem. Int. Ed. Engl. **14** (1975) 734.
- ⁹⁾ E. C. Ashby, Acc. Chem. Res. 21 (1988) 414.

[223/89]